
AR Home Builder - Developer Guide

Introduction
​ AR Home Builder (project name ARHomeDesigner) is an app that runs
on iOS devices 18.0 and newer. This app heavily relies on Apple’s AR Kit and
Reality Kit libraries to function, including core Swift UI/UI Kit functionality,
providing gesture recognition and event handling when specific views change
data in various parts of the app. This guide will give the reader a brief
overview of some of the main techniques and algorithms used in this app
and how views and published variables are connected throughout the app.
This guide assumes the reader is already familiar with how Swift and Xcode
function, thus, this guide will primarily focus on how the AR libraries function
and how the app is structured overall.

Table of Contents
Introduction​ 1
Table of Contents​ 1
Setting Up​ 2
ARView - How Data is Structured​ 2
Core Functionality​ 3

World Tracking​ 3
Plane Detection​ 3
Raycasting​ 4

Overall App Structure​ 4
Other Notes:​ 6

ARViewContainer:​ 6

1

Setting Up
​ For this project, you will need a Mac device with Xcode installed with
the proper SDKs installed to develop iOS apps. You will also need a physical
iOS device to test the program on, since AR Kit requires a physical camera
and, as of the time of writing, cannot be tested using Xcode’s iOS simulator.
The project files can be found on compsci04. From there, you can find the
download link on this project’s website. If you need assistance with how to
set up the app in Xcode to run on a physical iOS device, you can refer to the
guide in the user manual in the “Installing The App” section on page 2.

ARView - How Data is Structured
At the app’s core lies the central class that handles AR functionality: ARView.
This class can be found within the Reality Kit library, which it’s main
responsibility is to render the AR display that contains virtual 3D graphics.
This display is contained within a scene, which is made up of several anchor
entities that tether the rendered entities, such as 3D model entities or light
entities, to the scene. The flow chart below (credit to Andy Jazz) gives an
example of what this looks like. Each component in the nodes of the chart
needs to be linked together so that ARView can properly render entities in
the correct location with the proper child entities (i.e. things that make up
each entity/element in the AR scene)

2

https://compsci04.snc.edu/cs460/2025/kylemcfadden/docs.html
https://developer.apple.com/documentation/realitykit/arview
https://stackoverflow.com/questions/60505755/realitykit-vs-scenekit-vs-metal-high-quality-rendering#:~:text=on%20Vision%20Pro.-,iOS,-RealityKit%20reads%20in

Core Functionality
​ This section briefly goes over how key parts of this app work, mainly
the parts that are essentially required for this app to function, and why.
These are some of the key concepts that I, the one who designed/devolped
this project, believe to be necessary to keep going forward.

World Tracking
A key part of how placing and managing the location of virtual object

in a real world environment is done through world tracking. There are
several types of pre-built configurations in AR Kit that each are aimed at
general common use cases for AR, such as body and face tracking. World
tracking sets up the AR View to track the device’s movement with six
degrees of freedom (up-down, left-right, forward-back, yaw, pitch, and roll).
This is done using motion sensor data from the camara and through the use
of a gyroscope.

Another key element of world tracking is that it can detect planes,
images, and 3D objects in the environment according to the developer’s
specification. These kinds of detection can be enabled when first configuring
the AR View. The main one of discussion here is plane detection.

Plane Detection
​ Plane detection is an optional feature that comes as part of the
ARWorldTracking configuration. It enables AR View to scan the environment
for flat surfaces, and it will place a special type of plane anchor on that
surface. Each plane anchor has additional properties compared to a normal
anchor entity. Plane anchors keep track of the information regarding the
plane itself, i.e. how large the plane is and where the center of the plane
lies. The documentation in the source code mentions this, but to explain it in
more detail, this information is helpful because it allows for automatic sizing
of shapes so that the app can resize the shape for the user and move it to
the correct position. This information can be accessed via the planeExtent
var, which is done after obtaining the plane anchor from a raycast.

3

https://developer.apple.com/documentation/arkit/understanding-world-tracking

Raycasting
​ The ability to tap on surfaces displayed onscreen to place objects is
largely thanks to raycasting. Raycasting is a technique that converts a 2D
coordinate into a 3D coordinate through a mathematical ray, whose direction
and origin point in this case are determined by where the device is currently
located in physical space. The direction is also influenced by where the user
taps on the screen. This ray will shoot outwards until it intersects with
another entity or specified geometry. AR Kit provides a raycast function that
takes care of the ray calculations for the developer. In the current state,
raycasting is used to find detected planes via a tap gesture recognizer:

When the ARViewController detects a tap from the gesture recognizer, a
handler function is called that takes the 2D coordinate of where the user
tapped on the screen. From there, the function checks for a pre-existing
model entity first by checking if the 2D point makes a collision with the
model entity before performing a raycast on the location. This is due to each
model entity being given a collision component so that they can be
interacted with by the user.

Once it finds a plane that intersects with the ray, the plane anchor can then
be used to create the dimensions of the mesh and will serve as a blueprint
for the newly created anchor to tether the model entity to the scene.

Overall App Structure
​ The next page shows a data flow diagram that illustrates how variables
are connected throughout the app.

4

AppDelegate ContentView
▪ @StateObj: arView:

ARViewController()
▪ @State: showOptions: Bool

▪ arView: ARView
▪ @PUBLISHED vars:
▪ dimensions:

DimComponent
▪ userColor: Color
▪ userDepth: Float
▪ userRoughness: Float
▪ isMetal: Bool
▪ toggleEditMode: Bool

▪ confirmEdit: Bool
▪ toggleSCRNshot: Bool
▪ curModEnt: ModelEntity

▪ width: Float
▪ height: Float
▪ depth: Float
▪ color: Color
▪ rough: Float
▪ metal: Bool

]
]
]
]
]
]

ARViewController
Class

DimComponent
Struct

ARViewContainer

ColorSelector

Screenshot

EditView

OptionView

]

]
]
]
]
]
]
]
]
]
]

]

EditUIElements

WidthBox
@Binding: width: Float

MetallicToggle
@Binding: metal: Bool

HeightBox
@Binding: height: Float

ColorBox
@Binding: color: Color

DepthSlider
@Binding: depth: Float

RoughnessSlider
@Binding: rough: Float

arView.dimensions

@ObsvObj: arView:
ARViewController

5

Other Notes:

ARViewContainer:
​ When displaying the AR View to the user, the view itself must conform
to a SwiftUI view hierarchy, however, ARView conforms to a UIView instead.
The ARViewContainer struct acts as a bridge between SwiftUI and UIKit,
making UIViews compatible with SwiftUI views. When the app first launches,
the struct will call the makeUIView function, which will initialize the AR
configuration. The other function, updateUIView, is a function that gets
called when data associated with any bindings or observed objects is
changed. Since the majority of my AR functionality resides in a
custom-made class, this function was left unused, but is required for the
UIViewRepresentable protocol in the struct.

6

	AR Home Builder - Developer Guide
	Introduction
	Table of Contents
	Setting Up
	ARView - How Data is Structured
	Core Functionality
	World Tracking
	Plane Detection
	Raycasting

	Overall App Structure
	
	Other Notes:
	ARViewContainer:
	

